Modeling and Upscaling Plot-Scale Soil Erosion under Mediterranean Climate Variability
نویسندگان
چکیده
Soil erosion is an issue in the Mediterranean slopes. Erosion plots are useful to quantify erosion rates, but data are difficult to scale up to a slope level. Moreover, short observational frameworks are generally established, making it difficult to represent multi-year fluctuations. This paper deals with the potential of parsimonious modelling to upscale plot erosion (~23 m2) at Monte Pino Met European Research Observatory (South Italy) from 2001 to 2006. Under the assumption that the slope is fractal and contains plots, monthly gross soil erosion was modeled by lumping together the erosivity factor (runoff component), Normalized Difference Vegetation Index (vegetation cover factor), and the spatial scale dependence (slope length factor). This model was applied to reconstruct monthly gross soil erosion rates for the period of 1986–2006, for which hydrological inputs were available with sufficient detail. Pronounced interannual variations, with two distinct patterns, were observed: increasing rates of erosion were visible in 1995–2006 (peaking in November 1997, 50 Mg·ha−1·month−1), while in previous years only a few peaks slightly exceeded the average of the whole period (1 Mg·ha−1·month−1). Hydrological conditions indicate that important erosional processes have been triggered during low-frequency, short rainfall events occurring in spring–summer (e.g., May 2001, June 2003), or during longer, less intense events occurring in autumn–winter (e.g., November 1997) seasons. It is likely that increased precipitation amounts associated with more frequent convective storms created conditions for higher energy events triggering erosion. For the recent warm period, investigations at a higher than monthly resolution are required to better assess the seasonal changes of erosion rates and their relationship with soil conservation.
منابع مشابه
Erosion Modelling in a Mediterranean Subcatchment under Climate Change Scenarios Using Pan-european Soil Erosion Risk Assessment (pesera)
The Mediterranean region is particularly prone to erosion. This is because it is subject to long dry periods followed by heavy bursts of erosive rainfall, falling on steep slopes with fragile soils, resulting in considerable amounts of erosion. In parts of the Mediterranean region, erosion has reached a stage of irreversibility and in some places erosion has practically ceased because there is ...
متن کاملAn Upscaling Method for Cover-Management Factor and Its Application in the Loess Plateau of China
The cover-management factor (C-factor) is important for studying soil erosion. In addition, it is important to use sampling plot data to estimate the regional C-factor when assessing erosion and soil conservation. Here, the loess hill and gully region in Ansai County, China, was studied to determine a method for computing the C-factor. This C-factor is used in the Universal Soil Loss Equation (...
متن کاملPotential impacts of climate change on soil erosion vulnerability across the conterminous United States
Rainfall runoff erosivity (R) is one key climate factor that controls water erosion. Quantifying the effects of climate change–induced erosivity change is important for identifying critical regions prone to soil erosion under a changing environment. In this study we first evaluate the changes of R from 1970 to 2090 across the United States under nine climate conditions predicted by three genera...
متن کاملSensitivity analysis of a wetland methane emission model based on temperate and arctic wetland sites
Modelling of wetland CH4 fluxes using wetland soil emission models is used to determine the size of this natural source of CH4 emission on local to global scale. Most process models of CH4 formation and soil-atmosphere CH4 transport processes operate on a plot scale. For large scale emission modelling (regional to global scale) upscaling of this type of model requires thorough analysis of the s...
متن کاملModelling wheat yield responses to soil and climate variability at the regional scale
We present a study on the impact of soil and climatic variability on the yield of winter wheat in the Hérault-Libron-Orb Valley in southern France. The study was based on the use of a crop simulation model (Euro-ACCESS), run at 63 individual sites throughout the study area, for the current climate (1976 to 1984) and for potential future changes in temperature and precipitation (2047 to 2054). T...
متن کامل